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Validity of the perturbation theory for hard particle systems with very-short-range attraction
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Motivated by recent studies of colloidal systems at the effective one-component level, the validity of the
first-order perturbation theory of classical systems of hard particles interacting via short-range potentials is
investigated. The influence of the physical parameters on the accuracy of the perturbation theory is examined.
It is shown that this simple method is intrinsically appropriate to describe the fluid-solid transition. Concerning
the fluid-fluid one, the first-order perturbation theory provides acceptable results when the interaction range is
not too small. For very-short-range potentials it systematically leads to an unphysical fluid-fluid transition. In
the case of the depletion interaction between hard sphere solutes such a transition is found even at moderate
size asymmetry. It is finally shown that the perturbation theory is not more appropriate for an extended solid
than for a liquid with the same density, thus making difficult a quantitative description of the isostructural
solid-solid transition.
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I. INTRODUCTION has been investigated by various methods including density
expansiorf 7-9], calculation of the effective force in the su-

In recent years, the theoretical study of systems of classiperposition approximatiofil0—12, approximate closures of
cal particles interacting via short-ranged potentials has bethe OZE[13-15, and also numerical simulatig1,16—18.
come a relevant issue with a view to understanding the beéwhile confirming some aspects of the simple calculation of
havior of supramolecular systems, such as fullerenes ohsakura and Oosawa, these calculations lead to a more com-
colloids. For fullerenes, the unusually narrow attractive parplex picture of the depletion potential: it has a deeper and
of the interactiorf 1] with respect to simpléLennard-Jones- narrower attractive well, followed by oscillations with a pe-
like) fluids leads to an extreme reduction of the stabilityriod roughly equal to the small sphere’s diameter, and related
domain of the liquid phase, or even to its complete suppresto the incorporation of a hard core repulsion between the
sion according to some theoretical studiese[2,3] and ref-  small spheres. On the other hand, recent works have under-
erences therejnin the case of colloids, the occurrence of alined the necessity to go beyond hard spheres in order to
short-range effective attraction between solute partitles  describe real systems, especially pure colloid-solvent mix-
so called depletion potentjalwas already predicted by tures (see[12,15,19-2] and references on experimental
Asakura and Oosawfat] by modeling the suspension as an works therein.
asymmetric binary mixture of pure hard sphe(esS). The Therefore, the question of the appropriate model of the
depth and range of the depletion well is determined by theootential of mean force for colloids is still open. But, it al-
solvent density and the diameter of the small spheres: theeady appears that the interaction should be in any case “sin-
range is therefore extremely small for colloids dispersed in gular,” that is, extremely short ranged and oscillatory, with
true solvent, and more variable for mixtures of two distinctrespect to simple fluids. Therefore, it is necessary to deter-
supramolecular solutes. For HS mixtures with sufficientlymine which theoretical methods are suitable in this case.
high size ratio and solvent density, this attraction is respon- For the fluid state, integral equations of the reference hy-
sible for the phase separation that Biben and Harj&n pernetted chaifRHNC) type [22] appear to be powerful
predicted from the Ornstein-Zernike equatid@ZE’s) with enough, at least at the level of the effective one-component
particular closures for the pair distribution functiofi2DF). fluid, to reproduce the results of numerical simulatiphs]

This possibility, in contradiction with the long shared con- (see alsq 23,24 for simple fluidg. However, this method
clusion of Lebowitz and Rowlinsof6], has given a new requires heavy computations, and is severely limited by the
impetus to the study of these mixtures in two equally rel-presence of a region of the phase diagram, close to the fluid-
evant directions(i) the accurate determination of the deple- fluid (F-F) transition line, where numerical convergence is
tion potential(first for the HS mixture, and next for more impossible. Moreover, it does not permit a simple under-
realistic modelys (ii) the search of suitable theoretical meth- standing of the influence of the various parameters of the
ods for treating such interactions. The latter point is our mairmodel. In contrast, the much simpler perturbation theory pre-
concern in this work. sents just the opposite characteristics: it involves faster cal-

Point (i) has been considered several times in the literaculations, lends itself to simpler interpretations, but has a
ture: the potential of mean force between large solute spheresore uncertain domain of validity.

For the solid, the situation is even more complex because

the loss of translation invariance prohibits in practise the use

* Author to whom correspondence should be addressed. Email adf integral equations. Various density functional methods
dress: germain@univ-paris12.fr have then been proposed. Among these, the modified
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weighted density approximatiotMWDA) of Denton and the attraction has an extremely short range. Sec. V is the
Ashcroft [25] provides a consistent—and nonperturbative—conclusion.
calculation of the phase diagram, by extracting the free en-

ergy of the solid by reference to the fluid state. Unfortu- Il. PERTURBATION TREATMENT OF THE FREE
nately, this method and its variants suffer from difficulties in ENERGY

the treatment of attractive tails, and for all solids at high

density[26—29. It is, therefore, not appropriate for colloids A. General expression of the excess free energy

since the very short range of the depletion potential may The principle of the perturbation calculation with respect

induce a melting or solid-solidXS) transition near close to the interacting potential is to derive an approximate ex-

packing(see Sec. IV. pression of the total free enerdy from the exact relation
Therefore, as a fully consistent treatment by using thg34],

fluid state as unique reference is not feasible for the present

systems, an alternative could be to use approximations spe- B

cific to the high-density limit. In this way, an improved BF=pBFo+ fo u(p)ds, (1)

MWDA was proposed recently for repulsive potentials, in-

corporating also the properties of the static solid and a modg}{ere F, is the free energy of the hard sphere reference

of the lattice vibrationg29]. Alternatively, in Ref.[15], the system (whose properties are assumed to be know®
HS bir]ary mixture was studieq in the one-component repre= 1kgT with T the temperature, and(8) the internal en-
sentation by employing a hybrid method: the RHNC closure. oy of the system calculated for the total potential. By de-
was used for the fluid phase, while the solid one was studleﬂning F,=F—F, as the excess free energy due to the per-

by a si_mple first-order perturbation fchedﬁ.;P'l‘) Wi-th the H.S turbation potential, Eq(1) leads to
potential as reference. For the typical size ratio 10, this

apparently rough treatment of the solid led to a remarkable nt1l /oy
agreement with the MC resulf47] for the fluid-solid F-S) BF1=BUy+ >, TES] —n) , 2
transition, both in the low solvent density regime and the n=1 (N+1H B B=0

high-density one. In contrast, the extension of the FPT to the

fluid phase[30] gave much more contrasted results: whilewith Uy=U(B8=0). As the values ol and its derivatives
the F-Stransition lines remain quite correctly reproduced, anare computed at infinite temperature, they involve only the
unphysical F-F transition is systematically found at very distribution functions of the HS reference system, and do not
high density, in complete contradiction with numerical simu-depend ong. Equation(2) is thus the high-temperature ex-
lations. Concerning th&-S transition, which is stable foy ~ pansion of the free energy, whose lowest-order terms read
=20[17], the high-density brancinear close packingob-

tained in the FPT is very close to the MC points. But the BF 1= B(Wy)o(1—A5)+O((BWy)?), 3
agreement clearly worsens for the lower-density one. Previ-

ously, the FPT has been applied to the attractive Yukawa HS BUWZ)o— (Wy)3)

systemg31,32 and compared to simulatiof31,33 for dif- Ay= Wilo )

ferent attraction range parametets The trends observed
were similar to those relative to the depletion potential: bet-W
ter agreement with the MC results for tReS transition than
for the F-F andS-S ones(the latter existing fok>25[33]).

n being theN body perturbation potentighfter subtraction
of the core repulsion and the symbo{ ), denoting the sta-
tistical averages calculated in the reference HS system.

HOWE\I/er, f(;)r thef—:; tra}nsﬂ?n,d thle t.dlscregarlqtlas vc\j/erel Wy ) is thus the total perturbation energy, while the higher-
much less dramatic than for the depletion potential and only, e terms are determined by its fluctuations. For a pairwise

qua_mntatlve: ther-F coemstenge do”.‘a'” was §|mply OVer additive potentia] Wy= 2, -;V(r;;) with V(r) the pair inter-

estimated forx=2-9, theF-F line being stable in the FTP .0 i the co]e(W]) reduces to

for k smaller than about 7.4 instead of 6 in the MC simula- N/0

tions[32]. 1
To summarize, .the scope of tr_ns paper is to investigate the <WN>o=§f J' drdr’ p@(r,r )V(|r=r')), @)

conditions of validity of the FPT in the fluid and solid states,

and to evaluate the consequences of this simple approxima-

tion according to the physical system under consideration. Iwith p§?(r,r’) the HS two-particle density. In contrast, the

Sec. II, we recall briefly the HS perturbation scheme, and wéext term, containing contributions froM(|r —r’|) X V(|r”

discuss at qualitative level the influence of the physical pa—r"|), is much more complex since it also involves the

rameters on the accuracy of the FPT. In Sec. Ill, we preserthree- and four-particle densities of the reference system, etc.

the method used to test this approximation numerically. In(the calculation of the term iB" requires the knowledge of

Sec. IV, we present our results for two typical interactionall the distribution functions up to ordem2.

potentials: the Yukawa one and a model of the depletion one. Therefore, although the temperature expans®)rcan be

We provide a consistent explanation of the results obtaine@erformed in principle to any order, it is rather used in prac-

so far in the literature. In particular, we point out the conse-tice when the terms beyond first order are negligible. In this

quence of the FPT on thE-F and S-S transitions when case one simply writeE)*"=Fy+(Wy)o, where(Wy), is
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given by Eq.(4). The validity of such an approximation may that of the range of the interactiofsee for instance
be discussed by considering the ratig or, equivalently, by [30,34,38). In fact, this argument considers only a static
reexpressing Eql) as solid, for which one hap@(r,r')=p(r)p(r’). In a real
1 solid, not at close packing, the averaged P@fr) of the
_ , (2 , , HS reference system shows a peak near contact whose width
F=Fot Efo d)\f f drdr’ p(r,r)V(r=r', () decreases with densitgee, for example, Fig. 1 in Ref37]
or [38]) as in the liquid state. Therefore, the validity of the
with p(f)(r,r’) the two-particle density fok/, =\V. Equa- FPT does not depend intrinsically on the nature of the ther-
tions (4) and (5) show that the FPT amounts to rep|acing modynamic state, b_ut rather on the_density. As we will §ee in
p&(r,r") by p@(r,r') in the charging process, and thus to the Sec. IV, BAF, is not necessarily smaller, for a given
neglect the variations of the pair correlation function induceddensity, for the solid state than for the liquid one.

by the perturbation potential. The part of the free energy It appears from(1) and (2) that, whatevenv(r) is, the
neglected in this approximation is therefore regions of the phase diagram where the FPT is more appro-

priate are the supercritical region and the two opposite do-

11 mains (p—0) and (p—pc). This corresponds to theé-S
ﬁAF1=§j dhf f drdr'[p{?(r,r") transition, which involves states belonging all to one of these
0 regions: high temperature for the HS-like part of the transi-
—pgz)(r,r’)]V(|r—r’|). (6) tion, and extreme densities for the low-temperature gas-

dense solid transition. On the contrary, thdé- and theS-S
_ _ transitions(when the latter exisigequire a sizeable value of
B. Accuracy of the first-order perturbation theory the reduced strengt* and involve states with intermediate
As emphasized in the Introduction, the application of thedensity: the liquid state for thE-F transition, and the low-
FPT to very-short-ranged interaction, such as in colloids oflensity solid state for th&-Sone. With some interaction
Yukawa systems with large screening parameters, has giveiptentials, the FPT has failed precisely for these transitions.
contrasting results according to the specific transition undefor intermediate densities, indeed, the validity of the FPT
considerationf30—33. To gain some understanding of this depends strongly on the range \ér).
situation, it is useful to try to specify the physical parameters (3) The range of the potential. The numerical evaluation
that determine its validity. This discussion will facilitate the of BAF; (see Sec. Y shows that the range of the function
interpretation of the quantitative results presented in Sec. IM(r/o) has opposite effects at low or high density. At low
The perturbation potentials considered in the literature arélensity, using the reasonable approximatiRiir)=0(r/c
often of the formBV(r)=e*f(r/o) with o a suitably de- —1)exd—\e*f(r/o)] [with ©(x) the Heavyside step func-
fined HS diameter. The magnitude BQAF, is then essen- tion], one gets
tially determined by three parametdsee alsd34]). BAF, B 1—exe* (x)]
=127;f dX(

(1) The reduced interaction strengéfi. One has indeed N e*f(X) ’
A,~g&* (and thusBAF,~&*?). A, is therefore small with
respect to 1 when* is small enough. This is the typical case
for which the FPT is appropria{see Eqs(2) and(3)]. This
explains why it usually reproduces correctly theS (HS-
like) transition in the supercritical region.

(2) The densityp of the systemBAF; vanishes in the two
opposite limits p—0) and (p— p.) with p. the close pack-
ing density (p.=v2/0> with o the HS diameter For p
—0, this is a simple consequence of the behavigrinf the
excess free energy, leading in every case to a small cont
bution. In the opposite limitd—p.), BAF; also vanishes
because correlations are dominated by the core effects, a
consequence of the reduction of the free volume. In thi
limit, the HS distribution function shows a high and narrow

peak near contact. When the width of this peak is small g close this section, we note that our discussion of the
enough with respect to the distance over whifn) varies,  high-density limit is restricted to the case of interaction po-
the effect induced by the charging processgdf(r,r') is  tential having a hard-core part. For potentials with soft-core
expected to be weak, the equalii§?)(r,r')=p{)(r,r') be-  repulsion, the FPT with HS reference system is inaccurate at
ing exactly satisfied at close packifg5]. We wish to em-  high density (see discussion in Ref.39] and references
phasize that, in this part of the phase diagram, the relevarherein. Indeed, the starting Eqg1)—(3) are valid only
parameter for the accuracy of the FPT is the density of thevhen both the total and the reference potential have the same
system, and not its thermodynamic stétquid or solid. It  ensemble of accessible states in the phase space. When this
is indeed commonly argued that the FTP should be appropris not so, entropy effects are incorrectly accounted for at high
ate especially for a solid with the lattice spacing larger thardensity.

1

in which the integrand vanishes outside the attractive region
of f(x). Therefore, the deviatioBAF, is the smaller the
shorter is the range of(x). At high density, one has the
opposite trend: indeed, as pointed out(#) the condition
p@(r,r")=p{(r,r") is satisfied only when the variation of
f(x) (in the region of contagtis slow enough with respect to
that ofgg(x) [orgg(x) for the solid statg Therefore, starting
r[[om pc, the domain of density for which the perturbation

reatment is valid reduces when the range of the interaction is
Sdgcreased. This point is important for understanding why the
gallures of the FTP are especially important in the case of
asymmetric HS mixtures.
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Ill. OUTLINE OF THE METHOD

J
dr[g(r)—go(r)] —By(r)=0, 9
Before presenting our comparison of the FPT with exact f [9(r) = 0o(r)] do o(") ©

results in the fluid and in the soligee next sectionwe first
detail the method used for each state. This will be applied fofyhereB (r) is the reference systefwith interaction poten-
the Yukawa and for the Gteman-Evans-DietrichGED) po-  tjal ¢,(r)] bridge function ande(r) the total interaction

tential [8]. _ potential. For a givers(r), the input data are then the func-
In the fluid, BAF; was computed by using as the “exact” tjonsB,(r) andgo(r).

free energyF given by the RHNC theory, with optimized

reference systerf22]. This method is indeed known to very

accurately reproduce simulation data for many simple fluids B. Case of the high-density fluid

agreement with simulations was also found for binary HSyarious parametrizations of existing simulation data. One
mixtures, in the effective one-component fluid representamay, for instance, choose the parametrizatioBg(r) pro-
tion, at several values of solvent densities and size ratiogosed by Malijewsky and LabikML) [40], and the Verlet-
[15]. This method being well known, we briefly recall here \wgiss oneg'\VW) for go(r) [41]. Such a method, however, is
the main steps, and stress some precautions that are requirggteptable only in the domain of packing fractionss 0.5,

when dealing with high-density fluids. for which these parametrizations were built. In this case in-
deed, they can be considered as equivalent, since they all
A. General RHNC method reproduce accurately the results of simulations. But this

h inciole of th S deri equivalence worsens at higher densities as illustrated in Fig.
The principle of the RHNC approximation is to derive 1."\ o compare for a HS fluid with packing fraction

from Eg. (1) an expression of the excess free energy, With_o_62 the PDFgE,’W(r) from the VW parametrization with

respect to the HS fluid, by neglecting the variation of the . .
bridge function during the charging process of the perturba90 (), obtalneq by solvm.g Eqd7) and (8) for the refer-
tion potential. The RHNC free energy is then a functional ofSMNce HS p_otennab('i}Lr) with the ML parametnza_uon of
the PDRy(r) for the actual interaction, and of the P@{tr) Bo(r) [in this hfl:LasegO \(,53 and BO_(r) are fully consisterjt
of the HS reference system with adjustable diametefo Ve see thagy (0)>go (o). This would affect both the
computeg(r), one uses the OZE, RHNC and the FPT results when charging a very-short-range
potential. FurthermoregB"L(r) exhibits a secondary peak
B , , , that is absent irg},’w(r) (for a discussion of this peak and its
Y(r)_pf drh(re(r=r'D, @) physical consequences, see Ré2] and references thergin
Our prospect being to study short-range perturbation poten-
tials, only the part of the reference PDF close to the contact
is relevant. In this region, we have checked that using Rosen-
feld’s bridge functiona[43] leads to a result very similar to
g™ (r). In our calculations, we therefore used the following

with y(r)=h(r)—c(r), andc(r) the direct correlation func-
tion, the RHNC closure

g(r)=exg—B¢(r)+ y(r)+Bo(r)] (8 procedure: at each density, we used as unique input the ML
bridge function(which is faster and simpler to evaluate than
and the optimization condition Rosenfeld’s ong and computeay(“)"L(r) as described above.
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The PDFg(r) corresponding to the total interaction potential the reference system is obtained by minimizing the free en-
was next deduced from Eg&)—(9). This method is compu- ergy. For the potential studied in this paper, we found that
tationally less convenient than that using the VW PDF, but isoc°P' is systematically that of the physical system.

essential at high density to solve the convergence problems In the solid, we have computeBP®'{p) by using the

of the numerical algorithm one meets when choosing indeequation of state of HaJl6] for F,,5 and the parametrization
pendentlygy(r) andBy(r) as input(this convergence prob- of Kinkaid and Weiss[37] of the averaged HS PDF. We
lem is distinct from that encountered in the intermediate deneompared the results with the existing MC dgt&] for the

sity domain. As a test of the numerical algorithm, we GED potential.

compared our results with those of Caccaeatal. [44] for

the Yukawa potentials. These authors used a different variant IV. RESULTS AND DISCUSSION

of the RHNC, based on a parametrized bridge function opti- )

mized so as to have consistency between the virial and com- A. Fluid state

pressibility routes. Our results are in better agreement with 1. Yukawa potential

simulations than thosélready accurajeobtained by these
authors. This confirms the opinigd5] that the role of such
an imposed consistency is not cleapriori.

We first consider the potential

o, x<1
Finally, the comparison was performed by computing the
FPT free energy with the same pair distribution function for Bo(x)= . exd — x(x—1)] =1
the reference system: X 0T

B e oML (with x=r/o) for which the reduced streng#t and inverse
Fpert(p)_FO(p)+27Tpro drroge™ (nV(r). (10 rangex vary separately. According to Eq&) and (3), the
deviation BAF; is of the form BAF;~&*?[1+0O(&*)].

As for the RHNC method, the optimum diamete? of ~ We thus computed, for the fluid state, the functigh
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TABLE . Influence of the range and reduced strength of thewhere the fluid-fluid transition usually takes place when it
Yukawa perturbation potential on the PDF contact vaj(e). existy. These results are in agreement with our statement of
Sec. II B according to which the accuracy of the FPT at high

" =0 e"=1 er=2 e*=4 density would be determined, for a fixed valuessf, by the
k=5 11.37 11.84 12.25 14.34 respective widths of (x) and of the main peak ajy(x).
k=10 11.37 15.43 20.87 35.79 Another important observation is that, also increases
k=20 11.37 17.37 27.91 60.23  With «.

Point (3) implies that the FPT is not suitable to describe
the liquid phase for large values &{«=20), even at very
. . high density. In Table I, we show indeed that, for a very
— *2
\7(|03/Q)(],§3AF1/_'65),4vglth gdtrle to:a_l llolzme\}\lforrdlf;fr(iar;ané dense fluid p* =1.146), the RHNC contact valug® of the
alues ofx (x=5-40) ande™ (e*=1-4). We restricte PDF, corresponding to the total potential, strongly differs

oursglves o the rggion<0p§1.2 _for which it. s commonly . from that of the HS reference system when passing from
admitted that a fluid state is defined. For higher density, in- 5 t0 k= 20—40. It is thus clear that—in the latter cases—

deed, the questions relative to the correct description of th%: &  th Ve f h b
disordered state—existence of a “random close packing™® € ect of the attractive forces on the structure cannot be
neglected as this is done in the FPT.

and exact location—are still in debateee Ref.[47] and ) .
references therein To evaluate more precisely the consequences induced by

every couple ,&*),8(r) follows the general behavior dis- With temperature £* =1—4) of FP*(p) with respect to the

cussed in the Sec. II B. “exact” free energyFRHNC(p). We considered the two rep-
(1) Starting from 0 forp=0, & behaves likep? at low  resentative cases=7 (Fig. 3) and k=40 (Fig. 4). We see
density. In this region, the weakeéris, the largerx is. that for e*=1 (moderate temperature FP*(p) and

(2) At higher density5(r) still increases until a maximum FRPNC(p) are almost indistinguishable, even fior= 40, con-
value &,,,, after which it decreases. For fixed valuespafnd  firming in a spectacular way our qualitative statement of Sec.
k, & increases withe*. However, these variations have a |l B and previous results from the literature. When increasing
rather small relative magnitud@specially for largex), for  &*, however, the FTP approximation has quite different con-
the values ofe* under consideration: this means that thesequences according to the valuexof
term ine*?2 of the high-temperature expansifsee Eqs(2) k=7. The perturbation calculation overestimates the free
and(3)] is the major contribution t&. The incorporation of energy only in the region of intermediate density, the low-
this term could, therefore, bring a significant improvement toand high-density parts being correctly reproduced. As a con-
the perturbation scheme, at least for the present range sequence, the description of tiveF transition obtained in
temperature. However, the numerical calculations then bethe FPT is close to that of the RHNC theory, except in a
come less trivial. narrow range of temperature above the actual critical value

(3) The densityp,,, corresponding to the maximum de- (Tz=0.41): in this region, indeetsees* =2.22 the curve
viation 8,,, depends essentially og and it increases with FRHNS(p) is very flat, since the system is close to phase
the latter: it is located in the dense fluid region for separation. Then the transition exhibited B5"(p) is only
x=20-40 (for k>40, p,, is outside the region of stufly due to the changes of concavity &{r). When using a
while for k=5-10 it is still in the intermediate onghat is,  simple theory, such a discrepancy is not surprising near the

FIG. 3. Evolution with temperature of the re-
duced free energy* =(o°/Q)BF for k=7. p*
=po? is the reduced density. Solid curve, opti-
mized RHNC. Dashed curve, FPT. Inset shows
the F-F transition predicted by the FPT far*
=2.22, just above the actual critical point.
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critical point. As a resultT? is overestimated by about 10% — FRHNC s greater than the variations BRHNC itself. More-
with respect to the MC valueve foundT}P"=0.46 instead over, contrary to the case= 7, the situation worsens in the
of 0.41 in Ref.[31]). When cooling the system below the dense fluid. The shift of the peal, to higher densities leads
critical point, 6(r) increases. But apy, is well inside the to an unphysical transition in the FPT scheme: this would
transition region, the densities at coexistence are not signifeccur at very high density, the upper density branch being
cantly modified(seec* =4). out of the accessible domain of study. Such a transition is in
Postponing the discussion of the solid phase to the nexact only the consequence of the variationss¢f). An in-
subsection, the full phase diagram is shown in Fig. 5: we segermediate situation is shown in the inset for=20: just
that the FPT correctly reproduces thReS transition with re-  below the critical temperaturest =4), the coexistence den-
spect to the RHNC and the MC data, for high as well as forsities predicted by the FPT are clearly shifted to higher den-
low temperature. For thE-F transition, the domain of coex- sities with respect to the RHNC results.
istence is, as expected, a bit overestimated. However, it re- Therefore, the consequences of the perturbation treatment
mains metastable in the FPT as in the RHNC and MC apen theF-F transition become dramatic for extremely short-
proach (our version of the FPT is therefore slightly better ranged interaction: while fok=7, the FPT just leads to a
than that used in Ref31]). slight overestimation of the coexistence dom@ie obtained
x=40. The situation is completely different for two rea- the same result fok=10), that corresponding ta=40 is
sons: theF-F transition occurs at much lower temperature qualitatively incorrect and is a pure artifact of the method.
(we founde? =4.6) and, as emphasized above, the behavioiSuch a failure is very similar to that observed by Velasco,
of &(r) is much less favorable to the FPT. The consequenceNavascus, and Mederog30], who applied the FPT to asym-
are indeed observable fos*=4: the difference FP®"  metric HS binary mixtures in an effective one-component

0 . —— . T .
0.5 .
10 .
) C FIG. 5. Phase boundaries of the hard-sphere
1.5 ] Yukawa system in the*-p* representation for
B k=7. p*=pc® is the reduced density. Solid
o[ B lines, optimized RHNC (fluid)/FPT (solid).
I s Dashed lines, FPT. Squares, M&1].
2.5 .
3L P I I - N P
0 0.2 0.4 0.6 0.8 1 1.2 1.4
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6 7

5 [ ]

4r ] FIG. 6. Influence on the energy differende

- C 1 =(c%/Q)B (FPe'—FRHNC) of the size ratio and

L 4 B iad* — 3

3 [ ] solvent density for the GED potentigd* = po
r ] is the reduced density. Solid curve3=3 and
C ] 7s=0.2 (lower), 0.3 (medium, 0.4 (uppe).

2 - ] Dashed curvesq=5 and 7,=0.2 (lower), 0.3
F - (medium, 0.4 (upped. Dotted curvesq=10 and

; :_ _ 7s=0.2 (lower), 0.25 (uppe.

oL -

representation. We will develop this point further in the sub-leads systematically to an artificifd-F transition at very
section below. high density. This transition is located roughly in the region

p>1, and is even more shifted for the largest valuegy.of

2. Depletion potential From the MC data, &-F (metastablgeline exists only for the

In the reference quoted above, the FPT was used to studgEP Potential8] for a size ratiag>10 (for q=10 the tran-
the phase diagram of the mixture for different size ratiosSition occurs forps=0.29. In this case, the coexistence do-
(q=5-20). This diagram was computed in the plages) main is very large, and is located in the more usual region
for »=0-0.4, wherey is the solute packing fraction, and P<1. Moreover, concerning th8-Sisostructural transition
75 that of the pure solvent at equilibrium with the mixture. line, the FPT reproduces accurately only the high-density
For different versions of the depletion potentjal8,9, the  branch(see below.

FPT was compared with the MC results7], obtained for This discrepancy can be explained in a similar way to
the same potentials in two casg&9] and directly for the those obtained with the Yukawa potential for very largdo
mixture in all cases. The most striking result is that while theshow this, we have plotted = o3/Q X BAF; for the GED
perturbation satisfactorily reproduces tkeS transition, it  potential:

o, x<1

—H—q[sxzn + (9N +1202) 2+ (36N +3002) 7] 1sxg1+1
BdC(x)= 2 ° s s q

1
0, x>1+-—
q

[with A=q(x—1)—1], forg=3, 5, 10 andy,=0.1-0.4(see  towards high densitieghe same trend is observed when in-
Fig. 6). creasingy at fixed ). Thus, for every size ratio, there exists
(i) For every couple 4, 7s), A(p) has, as expected, the a value ofys above which the FPT will lead to an artificial
same shape as for the Yukawa potentfar the latter, we transition, involving high-density states. This transition is
plotted 6= A/e*2.) This, therefore, explains in the same way similar to those previously discussed for the larg¥ukawa
why the FPT is more suitable for tHeStransition than for systems. But in the present case, it occurs at all diameter
the F-F one. ratios. The reason is that, with the depletion potential, the
(i) In the present case, the influence of the physical pamagnitude and the depth of the attractive well do not vary
rametersy and %5 on A is, however, more complex than that separately with the two parameteys andg. This appears in
of k ande* for the true one-component systems; indeed, forFig. 7, where¢C(x) is plotted forq=3.5 and»s=0.2, 0.4:
a fixedq, the increase ofs not only increasea (as does:* we see that increasing at fixedq increases both the mag-
for the one component fluidbut it also shifts its maximum nitude of ¢© at contact and its spatial variations, defined as
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3 [ T T T T T T T T T T T T T T T N
2 | JPERREE ]
1 [ ) .
= E ) 1 FIG. 7. Dependence of the GED potential on
2 r . g and 7. Solid curves:q=3 and 7;=0.2
< r i (lower), 0.4 (uppe)p. Dashed curvesq=5 and
-1 . 7 ns= 0.2 (lower), 0.4 (uppe). For fixedq, the first
L i distance of cancellation ap(x) is the lower the
2 F . greaters;.
3 ]
-4 [ TN T SO TR AT T TN IR S N N P [ R \:
1 1.04  1.08 112 1.16 1.2 1.24  1.28 1.32

1o

AX 1= (1/¢%) (91 dx),—,. For example, fog=3, the be-  even for very singular potentials such as the depletion ones
havior of $©(x) close to contactsame slope and same mag- for large asymmetry. However, the situation worsens when
nitude may be fitted by a Yukawa potential: one getsconsidering theS-Sisostructural transition. This transition
(k,e*)=(8,1.34) for s=0.2, and ,e*)=(14,2.59) for exists for hard-core systems with very-short-ranged poten-
7s=0.4. As a consequence, the FPT always leads to an udial; for instance, it is stable fon=20 for a GED potential
physical transition, even for moderate size ratio. An examplé17], and fork=25 for the Yukawa ong33]. For the Yukawa

is shown forg=3, for which the transition occurs roughly potential, the results obtained in the FPT by Hasegg8h

for »s=0.35(see Fig. 8 Finally, we found for greatey the ~ Wwere in qualitative agreement with the MC data of R88],
same results as in RéBO]: a decrease of the criticals, due  but the criticalk above which theS-Stransition is stable with

to the increase of the depletion well, and the shift of thereéspect to melting was somewhat overestimdtegd=40 in
coexistence domain towards the large solute densities, due tBe FPT. We found essentially the same result for this po-
the reduction of its depth. tential with our version of the FPT for the fluid and the solid
state. But, as there is rto our knowledggMC data for the
free energy in the literature, we could not push the compari-
son further.

It is commonly admitted that the perturbation theory is MC values of the free energy were given in Ref7] for
suitable to describe the solid, for which the particles wouldthe GED potential foig=5, 10. The FPT performed in Ref.
be closely localized on the lattice sites, and thus the structurie30] describes accurately the dense solid branch, near close
rather insensitive to the attracti¢80,35. Indeed, as already packing, but not the extendeHiS-like) solid one. We argue
mentioned, the FPT reproduces quite well xS transition  that this feature, together with the results obtained with the

B. Solid state

5 —— — T T —— T T
-2y . Y . . T . . 4
4 L 285 —\‘,‘ T E P i
3 - - FIG. 8. Influence of the FPT approximation
C ] on the F-F transition forq=3 and 7,=0.38
N i 1 [f*=(0/Q)BF and p* =pc?]. At this solvent
2 - N density, the FPTdashed curveleads to an arti-
F 1 ficial transition that is predicted neither by the
L ] optimized RHNC theorysolid curve nor by the
e B MC simulations[17]. Inset shows the nonlinear
L ] contribution to the reduced FPT free energy after
oL b subtraction of its linear part.
1 L Ll L | : | L [
0 0.2 0.4 0.6 0.8 1 1.2
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7T —T —T T —T T P B
6F .
50 ]
4 g R FIG. 9. Influence of the FPT approximation
& 3 o R on the reduced solid free energyf*
i =(c®Q)BF. p*=pc? is the reduced density.
o B The FPT (dashed curvyeaccurately reproduces
2 r ] the MC data(empty squares, frorfil7]) only in
; o E the dense solid region.
0k =
A ; - - L - [ L .
0 0.5 1 1.5
p*
Yukawa potential, is a consequence of the extension of the V. CONCLUSION

approximation too far from the close packing limit. This is
evidenced in Fig. 9 in which our version of the FPT is com-
pared with the simulations data, foy=10 and »s=0.09,

In this paper, we examined the accuracy of the first-order
perturbation theory of classical systems of hard-core par-
S : T ticles interacting via short-range attractive potentials. These
_0.13._|_:or th's_ size ratio, thS—_Stransmon IS metasta‘llble, bl,J,t model potentials may be suitable to describe at the effective
its critical point at#7;=0.06 is very close to the “stable” o -onoonent level some complex systems such as colloi-
melting line. While descrlbmg rather accurately the mini- 4 suspensions. The advantage of the FPT, in comparison
mum of Fyc near close packingdue to the very short range ith more accurate methods such as the RHNC for the fluid
of the depletion potentiglthe deviationAF with respect to  or the MC simulations, is that it does not require heavy com-
the simulations increases progressively when decregsing putations and lends itself to simpler interpretations. Further-
In both casesAF increases, when passing from the liquid to more, it is not subject to the nonconvergence problem en-
the solid state. We ignore whether this trend is systematic ogountered by most of the integral equation methods when
not, but it clearly demonstrates that the ordered state is nafpproaching thé-F coexistence line. Concerning the solid,
intrinsically more appropriate for the perturbation treatmentmore sophisticated density functional approaches of the
In fact, as emphasized in Sec. Il, far from the close packindWDA type involve also heavy computations and are in fact
limit, the averaged two-particle density of the HS solid not appropriate for the potentials under consideration in this
shows a peak at contact, as in the liquid state. Thus, theork.
accuracy of the FPT is determined in every case by the re- Our numerical results have been obtained for the Yukawa
spective widths of the HS correlation functions and of thepotential and that of Goetzelmaet al. They confirm the
interaction potential. When the range of the latter is toomain trends predicted from our formal analysis: on the one
short, the FPT cannot be extended to the whole solid regiorhand, the accuracy of the FPT depends trivially on the tem-

However, the high-density solid state is always correctlyperature, or more generally, the strength of the perturbation
described since it occurs when the width of the correlatiorpotential. In this respect, we have observed for the Yukawa
peak is marked enough in the separation range where theotential that the deviatioRP®"— FRMNC has a major contri-
potential is significantsee[37,38 for the evolution with  bution in T? in a rather wide range of temperature. This
density of this peak in the solidIn this case, indeed, the suggests that the accuracy of the perturbation treatment
internal energy gain offsets the entropy decrease. This correvould be improved significantly by incorporating the
sponds to the situation where the FPT is appropriate, corsecond-order term. On the other hand, the validity of the FPT
trary to the density functional approaches with a liquid statedepends in a more subtle way on the interplay between the
as reference. Moreover, as tBeStransition occurs for much range of the interaction potential and the density of the sys-
weaker potentials than tie-F one, the FTP may be applied tem: for a fixed potential the difference between the FPT free
close to the critical point in a more suitable way; for in- energy and the “exact"—RHNC or MC—ones vanishes in
stance, we have found the onset of BStransition atps  the low- and high-density limits while it reaches its maxi-
=0.06 forg=10, in agreement with simulations. Our coex- mum at some intermediate value. But while it is commonly
istence densities are also correctly located with respect to theonsidered that the FPT is appropriate to study both the
MC data (p.=1.18, 1.26 in the FPT, the transition having dense fluid and the solid states for potentials with an HS
just occurred However, as soon ag, increases, the transi- repulsive part, we have shown that this is not true when the
tion line quickly widens. Then, the extension of the calcula-range of the attractive tail is very small. Indeed, for very
tion to lower densities makes the FPT inaccurate. short-range attraction@ypically k=20 for the Yukawa po-
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tentia) the validity of the FPT is drastically restricted to a temperature being just slightly overestimated. The situation
very narrow density domain near the close packing limit. Theworsens dramatically fok=20 where an unphysical transi-
limitation of the FPT for such potentials is a consequence ofion is found between two high-density fluid states. This fail-
the strong attractive force they induce near contact: whefre for such potential ranges is the consequence of the point
shifting the density from its close-packing value, these forcegjiscussed above. In the case of the depletion potential, we
quickly compete with the HS repulsion for the determinationhaye shown that the FPT leads to a similar artifidiaF

of the microscopic structure. Then, the HS system is NQransition whatever the size ratipis, above some value of

longer a good reference. Furthermore, we have shown thalent packing fraction in the reservoifs. In this case

the accuracy of the FPT is not improved when passing fro.”?ndeed, the width of the depletion well may arbitrarily be

the ﬂu'(.j state to the solid one with the same _den5|ty, MNeduced by increasings at fixedq. Therefore, the pathology

contradiction with what could be expected intuitively from

considerations based on the density profile of the two stateof the FPT already observed by Velasco, Navascues, and
yp ederos for some size ratios is in fact systematically present

Indeed, the accuracy of the FPT is in fact determined by th he oh di A he EPT i :
respective widths of the perturbation potential and that of thd" the phase diagram. As a consequence, the IS not suit-

peak of the PDF—or the averaged one for the solid—neafiPle to study theF-F transition either for pure solvent-

contact. In an extended solid, not at close packing, this peak0!loid systems or for mixture of supramolecular species
is not necessarily narrower than that of the fluid with theWith moderate size ratio. Furthermore, we have shown that

same density. the FPT suffers from the same limitations in the case of the

To summarize, the FPT is intrinsically suitable to describeS-S isostructural transition since this one is present only for
the F-S transition even for extremely short-range potentials.very-short-range potentials. The perturbation theory repro-
Indeed, this transition involves only physical states for whichduces accurately the solid branch located near close packing
the FPT is appropriate: moderate strength of the reduced pdut not the extended solid one for which the effect of the
tential for the HS-like transition, and densities very close toattractive forces on the structure cannot be neglected. How-
the two opposite limits for the sublimation. On the contrary,ever, as theS-S transition occurs for lower strength of the
the prediction for thé--F transition depends critically on the interaction potential, we found that the FPT could eventually
range of the attraction. For a Yukawa potential, € tran-  be used at least qualitatively to predict the existence of such
sition is qualitatively well described fok<10, the critical phase transitions.
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