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Validity of the perturbation theory for hard particle systems with very-short-range attraction
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Motivated by recent studies of colloidal systems at the effective one-component level, the validity of the
first-order perturbation theory of classical systems of hard particles interacting via short-range potentials is
investigated. The influence of the physical parameters on the accuracy of the perturbation theory is examined.
It is shown that this simple method is intrinsically appropriate to describe the fluid-solid transition. Concerning
the fluid-fluid one, the first-order perturbation theory provides acceptable results when the interaction range is
not too small. For very-short-range potentials it systematically leads to an unphysical fluid-fluid transition. In
the case of the depletion interaction between hard sphere solutes such a transition is found even at moderate
size asymmetry. It is finally shown that the perturbation theory is not more appropriate for an extended solid
than for a liquid with the same density, thus making difficult a quantitative description of the isostructural
solid-solid transition.
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I. INTRODUCTION

In recent years, the theoretical study of systems of cla
cal particles interacting via short-ranged potentials has
come a relevant issue with a view to understanding the
havior of supramolecular systems, such as fullerenes
colloids. For fullerenes, the unusually narrow attractive p
of the interaction@1# with respect to simple~Lennard-Jones-
like! fluids leads to an extreme reduction of the stabil
domain of the liquid phase, or even to its complete supp
sion according to some theoretical studies~see@2,3# and ref-
erences therein!. In the case of colloids, the occurrence of
short-range effective attraction between solute particles~the
so called depletion potential! was already predicted b
Asakura and Oosawa@4# by modeling the suspension as a
asymmetric binary mixture of pure hard spheres~HS!. The
depth and range of the depletion well is determined by
solvent density and the diameter of the small spheres:
range is therefore extremely small for colloids dispersed
true solvent, and more variable for mixtures of two distin
supramolecular solutes. For HS mixtures with sufficien
high size ratio and solvent density, this attraction is resp
sible for the phase separation that Biben and Hansen@5#
predicted from the Ornstein-Zernike equations~OZE’s! with
particular closures for the pair distribution functions~PDF!.
This possibility, in contradiction with the long shared co
clusion of Lebowitz and Rowlinson@6#, has given a new
impetus to the study of these mixtures in two equally r
evant directions:~i! the accurate determination of the dep
tion potential~first for the HS mixture, and next for mor
realistic models!, ~ii ! the search of suitable theoretical met
ods for treating such interactions. The latter point is our m
concern in this work.

Point ~i! has been considered several times in the lite
ture: the potential of mean force between large solute sph
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has been investigated by various methods including den
expansion@7–9#, calculation of the effective force in the su
perposition approximation@10–12#, approximate closures o
the OZE@13–15#, and also numerical simulation@11,16–18#.
While confirming some aspects of the simple calculation
Asakura and Oosawa, these calculations lead to a more c
plex picture of the depletion potential: it has a deeper a
narrower attractive well, followed by oscillations with a p
riod roughly equal to the small sphere’s diameter, and rela
to the incorporation of a hard core repulsion between
small spheres. On the other hand, recent works have un
lined the necessity to go beyond hard spheres in orde
describe real systems, especially pure colloid-solvent m
tures ~see @12,15,19–21# and references on experiment
works therein!.

Therefore, the question of the appropriate model of
potential of mean force for colloids is still open. But, it a
ready appears that the interaction should be in any case ‘
gular,’’ that is, extremely short ranged and oscillatory, w
respect to simple fluids. Therefore, it is necessary to de
mine which theoretical methods are suitable in this case

For the fluid state, integral equations of the reference
pernetted chain~RHNC! type @22# appear to be powerfu
enough, at least at the level of the effective one-compon
fluid, to reproduce the results of numerical simulations@15#
~see also@23,24# for simple fluids!. However, this method
requires heavy computations, and is severely limited by
presence of a region of the phase diagram, close to the fl
fluid (F-F) transition line, where numerical convergence
impossible. Moreover, it does not permit a simple und
standing of the influence of the various parameters of
model. In contrast, the much simpler perturbation theory p
sents just the opposite characteristics: it involves faster
culations, lends itself to simpler interpretations, but has
more uncertain domain of validity.

For the solid, the situation is even more complex beca
the loss of translation invariance prohibits in practise the
of integral equations. Various density functional metho
have then been proposed. Among these, the modi
d-
©2002 The American Physical Society09-1
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PH. GERMAIN AND S. AMOKRANE PHYSICAL REVIEW E65 031109
weighted density approximation~MWDA ! of Denton and
Ashcroft @25# provides a consistent–and nonperturbativ
calculation of the phase diagram, by extracting the free
ergy of the solid by reference to the fluid state. Unfor
nately, this method and its variants suffer from difficulties
the treatment of attractive tails, and for all solids at hi
density@26–29#. It is, therefore, not appropriate for colloid
since the very short range of the depletion potential m
induce a melting or solid-solid (S-S) transition near close
packing~see Sec. IV!.

Therefore, as a fully consistent treatment by using
fluid state as unique reference is not feasible for the pre
systems, an alternative could be to use approximations
cific to the high-density limit. In this way, an improve
MWDA was proposed recently for repulsive potentials,
corporating also the properties of the static solid and a mo
of the lattice vibrations@29#. Alternatively, in Ref.@15#, the
HS binary mixture was studied in the one-component rep
sentation by employing a hybrid method: the RHNC clos
was used for the fluid phase, while the solid one was stud
by a simple first-order perturbation theory~FPT! with the HS
potential as reference. For the typical size ratioq510, this
apparently rough treatment of the solid led to a remarka
agreement with the MC results@17# for the fluid-solid (F-S)
transition, both in the low solvent density regime and t
high-density one. In contrast, the extension of the FPT to
fluid phase@30# gave much more contrasted results: wh
theF-S transition lines remain quite correctly reproduced,
unphysicalF-F transition is systematically found at ver
high density, in complete contradiction with numerical sim
lations. Concerning theS-S transition, which is stable forq
>20 @17#, the high-density branch~near close packing! ob-
tained in the FPT is very close to the MC points. But t
agreement clearly worsens for the lower-density one. Pr
ously, the FPT has been applied to the attractive Yukawa
systems@31,32# and compared to simulations@31,33# for dif-
ferent attraction range parametersk. The trends observed
were similar to those relative to the depletion potential: b
ter agreement with the MC results for theF-S transition than
for theF-F andS-S ones~the latter existing fork.25 @33#!.
However, for theF-F transition, the discrepancies we
much less dramatic than for the depletion potential and o
quantitative: theF-F coexistence domain was simply ove
estimated fork52 – 9, theF-F line being stable in the FTP
for k smaller than about 7.4 instead of 6 in the MC simu
tions @32#.

To summarize, the scope of this paper is to investigate
conditions of validity of the FPT in the fluid and solid state
and to evaluate the consequences of this simple approx
tion according to the physical system under consideration
Sec. II, we recall briefly the HS perturbation scheme, and
discuss at qualitative level the influence of the physical
rameters on the accuracy of the FPT. In Sec. III, we pres
the method used to test this approximation numerically.
Sec. IV, we present our results for two typical interacti
potentials: the Yukawa one and a model of the depletion o
We provide a consistent explanation of the results obtai
so far in the literature. In particular, we point out the con
quence of the FPT on theF-F and S-S transitions when
03110
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the attraction has an extremely short range. Sec. V is
conclusion.

II. PERTURBATION TREATMENT OF THE FREE
ENERGY

A. General expression of the excess free energy

The principle of the perturbation calculation with respe
to the interacting potential is to derive an approximate
pression of the total free energyF from the exact relation
@34#,

bF5bF01E
0

b

U~b!db, ~1!

where F0 is the free energy of the hard sphere referen
system ~whose properties are assumed to be known!, b
51/kBT with T the temperature, andU(b) the internal en-
ergy of the system calculated for the total potential. By d
fining F15F2F0 as the excess free energy due to the p
turbation potential, Eq.~1! leads to

bF15bU01 (
n>1

bn11

~n11!! S ]nU

]bn D
b50

, ~2!

with U05U(b50). As the values ofU and its derivatives
are computed at infinite temperature, they involve only
distribution functions of the HS reference system, and do
depend onb. Equation~2! is thus the high-temperature ex
pansion of the free energy, whose lowest-order terms rea

bF15b^WN&0~12D2!1O„~bWN!3
…, ~3!

D25
b~^WN

2 &02^WN&0
2!

^WN&0
,

WN being theN body perturbation potential~after subtraction
of the core repulsion!, and the symbol̂ &0 denoting the sta-
tistical averages calculated in the reference HS syst
^WN&0 is thus the total perturbation energy, while the high
order terms are determined by its fluctuations. For a pairw
additive potential@WN5S i , jV(r i j ) with V(r ) the pair inter-
action outside the core#, ^WN&0 reduces to

^WN&05
1

2 E E dr dr 8r0
~2!~r ,r 8!V~ ur2r 8u!, ~4!

with r0
(2)(r ,r 8) the HS two-particle density. In contrast, th

next term, containing contributions fromV(ur2r 8u)3V(ur 9
2r-u), is much more complex since it also involves th
three- and four-particle densities of the reference system,
~the calculation of the term inbn requires the knowledge o
all the distribution functions up to order 2n!.

Therefore, although the temperature expansion~2! can be
performed in principle to any order, it is rather used in pra
tice when the terms beyond first order are negligible. In t
case one simply writesF1

pert5F01^WN&0 , where^WN&0 is
9-2
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VALIDITY OF THE PERTURBATION THEORY FOR . . . PHYSICAL REVIEW E 65 031109
given by Eq.~4!. The validity of such an approximation ma
be discussed by considering the ratioD2 or, equivalently, by
reexpressing Eq.~1! as

F5F01
1

2 E0

1

dlE E dr dr 8rl
~2!~r ,r 8!V~ ur2r 8u!, ~5!

with rl
(2)(r ,r 8) the two-particle density forVl5lV. Equa-

tions ~4! and ~5! show that the FPT amounts to replacin
rl

(2)(r ,r 8) by r0
(2)(r ,r 8) in the charging process, and thus

neglect the variations of the pair correlation function induc
by the perturbation potential. The part of the free ene
neglected in this approximation is therefore

bDF15
1

2 E0

1

dlE E dr dr 8@rl
~2!~r ,r 8!

2r0
~2!~r ,r 8!#V~ ur2r 8u!. ~6!

B. Accuracy of the first-order perturbation theory

As emphasized in the Introduction, the application of t
FPT to very-short-ranged interaction, such as in colloids
Yukawa systems with large screening parameters, has g
contrasting results according to the specific transition un
consideration@30–33#. To gain some understanding of th
situation, it is useful to try to specify the physical paramet
that determine its validity. This discussion will facilitate th
interpretation of the quantitative results presented in Sec

The perturbation potentials considered in the literature
often of the formbV(r )5«* f (r /s) with s a suitably de-
fined HS diameter. The magnitude ofbDF1 is then essen-
tially determined by three parameters~see also@34#!.

~1! The reduced interaction strength«* . One has indeed
D2;«* ~and thusbDF1;«* 2!. D2 is therefore small with
respect to 1 when«* is small enough. This is the typical cas
for which the FPT is appropriate@see Eqs.~2! and~3!#. This
explains why it usually reproduces correctly theF-S ~HS-
like! transition in the supercritical region.

~2! The densityr of the system.bDF1 vanishes in the two
opposite limits (r→0) and (r→rc) with rc the close pack-
ing density ~rc5&/s3 with s the HS diameter!. For r
→0, this is a simple consequence of the behavior inr2 of the
excess free energy, leading in every case to a small co
bution. In the opposite limit (r→rc), bDF1 also vanishes
because correlations are dominated by the core effects,
consequence of the reduction of the free volume. In t
limit, the HS distribution function shows a high and narro
peak near contact. When the width of this peak is sm
enough with respect to the distance over whichV(r ) varies,
the effect induced by the charging process onrl

(2)(r ,r 8) is
expected to be weak, the equalityrl

(2)(r ,r 8)5r0
(2)(r ,r 8) be-

ing exactly satisfied at close packing@35#. We wish to em-
phasize that, in this part of the phase diagram, the rele
parameter for the accuracy of the FPT is the density of
system, and not its thermodynamic state~liquid or solid!. It
is indeed commonly argued that the FTP should be appro
ate especially for a solid with the lattice spacing larger th
03110
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that of the range of the interaction~see for instance
@30,34,36#!. In fact, this argument considers only a sta
solid, for which one hasr (2)(r ,r 8)5r(r )r(r 8). In a real
solid, not at close packing, the averaged PDFḡ0(r ) of the
HS reference system shows a peak near contact whose w
decreases with density~see, for example, Fig. 1 in Ref.@37#
or @38#! as in the liquid state. Therefore, the validity of th
FPT does not depend intrinsically on the nature of the th
modynamic state, but rather on the density. As we will see
the Sec. IV,bDF1 is not necessarily smaller, for a give
density, for the solid state than for the liquid one.

It appears from~1! and ~2! that, whateverV(r ) is, the
regions of the phase diagram where the FPT is more ap
priate are the supercritical region and the two opposite
mains (r→0) and (r→rc). This corresponds to theF-S
transition, which involves states belonging all to one of the
regions: high temperature for the HS-like part of the tran
tion, and extreme densities for the low-temperature g
dense solid transition. On the contrary, theF-F and theS-S
transitions~when the latter exists! require a sizeable value o
the reduced strength«* and involve states with intermediat
density: the liquid state for theF-F transition, and the low-
density solid state for theS-Sone. With some interaction
potentials, the FPT has failed precisely for these transitio
For intermediate densities, indeed, the validity of the F
depends strongly on the range ofV(r ).

~3! The range of the potential. The numerical evaluati
of bDF1 ~see Sec. IV! shows that the range of the functio
f (r /s) has opposite effects at low or high density. At lo
density, using the reasonable approximationgl(r ).U(r /s
21)exp@2l«* f(r/s)# @with U(x) the Heavyside step func
tion#, one gets

bDF1

N
.12hE

1

`

dx S 12exp@«* f ~x!#

«* f ~x!
21D,

in which the integrand vanishes outside the attractive reg
of f (x). Therefore, the deviationbDF1 is the smaller the
shorter is the range off (x). At high density, one has the
opposite trend: indeed, as pointed out in~2! the condition
rl

(2)(r ,r 8).r0
(2)(r ,r 8) is satisfied only when the variation o

f (x) ~in the region of contact! is slow enough with respect to
that ofg0(x) @or ḡ0(x) for the solid state#. Therefore, starting
from rc , the domain of density for which the perturbatio
treatment is valid reduces when the range of the interactio
decreased. This point is important for understanding why
failures of the FTP are especially important in the case
asymmetric HS mixtures.

To close this section, we note that our discussion of
high-density limit is restricted to the case of interaction p
tential having a hard-core part. For potentials with soft-co
repulsion, the FPT with HS reference system is inaccurat
high density ~see discussion in Ref.@39# and references
therein!. Indeed, the starting Eqs.~1!–~3! are valid only
when both the total and the reference potential have the s
ensemble of accessible states in the phase space. Whe
is not so, entropy effects are incorrectly accounted for at h
density.
9-3
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FIG. 1. Pair distribution functions of the har
sphere fluid (h50.62) computed from the Verlet
Weis parametrization~dashed line! and from the
Malijevski-Labik parametrization~solid line!. In-
set shows the region of contact.
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III. OUTLINE OF THE METHOD

Before presenting our comparison of the FPT with ex
results in the fluid and in the solid~see next section!, we first
detail the method used for each state. This will be applied
the Yukawa and for the Goe¨tzman-Evans-Dietrich~GED! po-
tential @8#.

In the fluid,bDF1 was computed by using as the ‘‘exac
free energyF given by the RHNC theory, with optimized
reference system@22#. This method is indeed known to ver
accurately reproduce simulation data for many simple flu
such as the LJ@23# or Yukawa @24# fluids. Recently, good
agreement with simulations was also found for binary
mixtures, in the effective one-component fluid represen
tion, at several values of solvent densities and size ra
@15#. This method being well known, we briefly recall he
the main steps, and stress some precautions that are req
when dealing with high-density fluids.

A. General RHNC method

The principle of the RHNC approximation is to deriv
from Eq. ~1! an expression of the excess free energy, w
respect to the HS fluid, by neglecting the variation of t
bridge function during the charging process of the pertur
tion potential. The RHNC free energy is then a functional
the PDFg(r ) for the actual interaction, and of the PDFg0(r )
of the HS reference system with adjustable diameters. To
computeg(r ), one uses the OZE,

g~r !5rE dr 8 h~r 8!c~ ur2r 8u!, ~7!

with g(r )5h(r )2c(r ), andc(r ) the direct correlation func-
tion, the RHNC closure

g~r !5exp@2bf~r !1g~r !1B0~r !# ~8!

and the optimization condition
03110
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E dr @g~r !2g0~r !#
]

]s
B0~r !50, ~9!

whereB0(r ) is the reference system@with interaction poten-
tial f0(r )# bridge function andf(r ) the total interaction
potential. For a givenf(r ), the input data are then the func
tions B0(r ) andg0(r ).

B. Case of the high-density fluid

B0(r ) and g0(r ) are usually chosen separately from t
various parametrizations of existing simulation data. O
may, for instance, choose the parametrization ofB0(r ) pro-
posed by Malijewsky and Labik~ML ! @40#, and the Verlet-
Weiss one~VW! for g0(r ) @41#. Such a method, however, i
acceptable only in the domain of packing fractions,h<0.5,
for which these parametrizations were built. In this case
deed, they can be considered as equivalent, since the
reproduce accurately the results of simulations. But t
equivalence worsens at higher densities as illustrated in
1: we compare for a HS fluid with packing fractionh
50.62 the PDFg0

VW(r ) from the VW parametrization with
g0

ML(r ), obtained by solving Eqs.~7! and ~8! for the refer-
ence HS potentialf0(r ) with the ML parametrization of
B0(r ) @in this case,g0

ML(r ) andB0(r ) are fully consistent#.
We see thatg0

ML(s).g0
VW(s). This would affect both the

RHNC and the FPT results when charging a very-short-ra
potential. Furthermore,g0

ML(r ) exhibits a secondary pea
that is absent ing0

VW(r ) ~for a discussion of this peak and it
physical consequences, see Ref.@42# and references therein!.
Our prospect being to study short-range perturbation po
tials, only the part of the reference PDF close to the con
is relevant. In this region, we have checked that using Ros
feld’s bridge functional@43# leads to a result very similar to
g0

ML(r ). In our calculations, we therefore used the followin
procedure: at each density, we used as unique input the
bridge function~which is faster and simpler to evaluate tha
Rosenfeld’s one!, and computedg0

ML(r ) as described above
9-4
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FIG. 2. Influence of the range and reduce
strength of the Yukawa perturbation potential o
the reduced energy differenced5(s3/V)
3(bDF1 /e* 2). r* 5rs3 is the reduced density
~a! k55, 10 with e* 51 ~solid curves!, e* 52
~dashed curves! ande* 54 ~short dash–long dash
curves!. ~b! k520, 40 withe* 51, 2 and 4~same
symbols!. The missing parts in some of th
curves correspond to the region of nonconve
gence of the optimized RHNC algorithm.
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The PDFg(r ) corresponding to the total interaction potent
was next deduced from Eqs.~7!–~9!. This method is compu-
tationally less convenient than that using the VW PDF, bu
essential at high density to solve the convergence probl
of the numerical algorithm one meets when choosing in
pendentlyg0(r ) andB0(r ) as input~this convergence prob
lem is distinct from that encountered in the intermediate d
sity domain!. As a test of the numerical algorithm, w
compared our results with those of Caccamoet al. @44# for
the Yukawa potentials. These authors used a different var
of the RHNC, based on a parametrized bridge function o
mized so as to have consistency between the virial and c
pressibility routes. Our results are in better agreement w
simulations than those~already accurate! obtained by these
authors. This confirms the opinion@45# that the role of such
an imposed consistency is not cleara priori.

Finally, the comparison was performed by computing
FPT free energy with the same pair distribution function
the reference system:

Fpert~r!5F0~r!12pNrE
0

`

dr r 2g0
ML~t!V~r !. ~10!

As for the RHNC method, the optimum diametersopt of
03110
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the reference system is obtained by minimizing the free
ergy. For the potential studied in this paper, we found t
sopt is systematically that of the physical system.

In the solid, we have computedFpert(r) by using the
equation of state of Hall@46# for FHS and the parametrization
of Kinkaid and Weiss@37# of the averaged HS PDF. W
compared the results with the existing MC data@17# for the
GED potential.

IV. RESULTS AND DISCUSSION

A. Fluid state

1. Yukawa potential

We first consider the potential

bf~x!5H `, x,1

2«*
exp@2k~x21!#

x
, x>1

~with x5r /s! for which the reduced strength«* and inverse
rangek vary separately. According to Eqs.~2! and ~3!, the
deviation bDF1 is of the form bDF1;«* 2@11O(«* )#.
We thus computed, for the fluid state, the functiond
9-5
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PH. GERMAIN AND S. AMOKRANE PHYSICAL REVIEW E65 031109
5(s3/V)(bDF1 /«*2), with V the total volume, for different
values ofk (k55 – 40) and«* («* 51 – 4). We restricted
ourselves to the region 0,r,1.2 for which it is commonly
admitted that a fluid state is defined. For higher density,
deed, the questions relative to the correct description of
disordered state—existence of a ‘‘random close packi
and exact location—are still in debate~see Ref.@47# and
references therein!.

Our results are summarized in Fig. 2. We see that,
every couple (k,«* ),d(r ) follows the general behavior dis
cussed in the Sec. II B.

~1! Starting from 0 forr50, d behaves liker2 at low
density. In this region, the weakerd is, the largerk is.

~2! At higher density,d(r ) still increases until a maximum
valuedm , after which it decreases. For fixed values ofr and
k, d increases with«* . However, these variations have
rather small relative magnitude~especially for largek!, for
the values of«* under consideration: this means that t
term in «* 2 of the high-temperature expansion@see Eqs.~2!
and ~3!# is the major contribution tod. The incorporation of
this term could, therefore, bring a significant improvemen
the perturbation scheme, at least for the present rang
temperature. However, the numerical calculations then
come less trivial.

~3! The densityrm , corresponding to the maximum de
viation dm , depends essentially onk, and it increases with
the latter: it is located in the dense fluid region f
k520– 40 ~for k.40, rm is outside the region of study!
while for k55 – 10 it is still in the intermediate one~that is,

TABLE I. Influence of the range and reduced strength of
Yukawa perturbation potential on the PDF contact valueg(s).

«* 50 «* 51 «* 52 «* 54

k55 11.37 11.84 12.25 14.34
k510 11.37 15.43 20.87 35.79
k520 11.37 17.37 27.91 60.23
03110
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where the fluid-fluid transition usually takes place when
exists!. These results are in agreement with our statemen
Sec. II B according to which the accuracy of the FPT at h
density would be determined, for a fixed value of«* , by the
respective widths off (x) and of the main peak ofg0(x).

Another important observation is thatdm also increases
with k.

Point ~3! implies that the FPT is not suitable to descri
the liquid phase for large values ofk(k>20), even at very
high density. In Table I, we show indeed that, for a ve
dense fluid (r* 51.146), the RHNC contact valueg0 of the
PDF, corresponding to the total potential, strongly diffe
from that of the HS reference system when passing fr
k55 to k520– 40. It is thus clear that—in the latter cases
the effect of the attractive forces on the structure cannot
neglected as this is done in the FPT.

To evaluate more precisely the consequences induce
the FPT on theF-F transition, we next studied the evolutio
with temperature («* 51 – 4) of Fpert(r) with respect to the
‘‘exact’’ free energyFRHNC(r). We considered the two rep
resentative casesk57 ~Fig. 3! and k540 ~Fig. 4!. We see
that for «* 51 ~moderate temperature!, Fpert(r) and
FRHNC(r) are almost indistinguishable, even fork540, con-
firming in a spectacular way our qualitative statement of S
II B and previous results from the literature. When increas
«* , however, the FTP approximation has quite different co
sequences according to the value ofk.

k57. The perturbation calculation overestimates the f
energy only in the region of intermediate density, the lo
and high-density parts being correctly reproduced. As a c
sequence, the description of theF-F transition obtained in
the FPT is close to that of the RHNC theory, except in
narrow range of temperature above the actual critical va
(Tc* .0.41): in this region, indeed~see«* 52.22! the curve
FRHNC(r) is very flat, since the system is close to pha
separation. Then the transition exhibited byFpert(r) is only
due to the changes of concavity ofd(r ). When using a
simple theory, such a discrepancy is not surprising near
-

i-
s

FIG. 3. Evolution with temperature of the re
duced free energyf * 5(s3/V)bF for k57. r*
5rs3 is the reduced density. Solid curve, opt
mized RHNC. Dashed curve, FPT. Inset show
the F-F transition predicted by the FPT fore*
52.22, just above the actual critical point.
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FIG. 4. Evolution with temperature of the re
duced free energyf * 5(s3/V)bF for k540.
r* 5rs3 is the reduced density. Solid curve, op
timized RHNC. Dashed curve, FPT. The com
plete discrepancy of the FPT at high density i
duces an unphysical transition whenT is low
enough. Inset shows the casek520 for e* 54
~same symbols!.
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critical point. As a result,Tc* is overestimated by about 10%
with respect to the MC value~we foundTc*

pert.0.46 instead
of 0.41 in Ref.@31#!. When cooling the system below th
critical point, d(r ) increases. But asrm is well inside the
transition region, the densities at coexistence are not sig
cantly modified~see«* 54!.

Postponing the discussion of the solid phase to the n
subsection, the full phase diagram is shown in Fig. 5: we
that the FPT correctly reproduces theF-S transition with re-
spect to the RHNC and the MC data, for high as well as
low temperature. For theF-F transition, the domain of coex
istence is, as expected, a bit overestimated. However, i
mains metastable in the FPT as in the RHNC and MC
proach ~our version of the FPT is therefore slightly bett
than that used in Ref.@31#!.

k540. The situation is completely different for two re
sons: theF-F transition occurs at much lower temperatu
~we found«c* .4.6! and, as emphasized above, the behav
of d(r ) is much less favorable to the FPT. The consequen
are indeed observable for«* 54: the difference Fpert
03110
fi-

xt
e

r

e-
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r
es

2FRHNC is greater than the variations ofFRHNC itself. More-
over, contrary to the casek57, the situation worsens in th
dense fluid. The shift of the peakdm to higher densities lead
to an unphysical transition in the FPT scheme: this wo
occur at very high density, the upper density branch be
out of the accessible domain of study. Such a transition i
fact only the consequence of the variations ofd(r ). An in-
termediate situation is shown in the inset fork520: just
below the critical temperature («* 54), the coexistence den
sities predicted by the FPT are clearly shifted to higher d
sities with respect to the RHNC results.

Therefore, the consequences of the perturbation treatm
on theF-F transition become dramatic for extremely sho
ranged interaction: while fork57, the FPT just leads to a
slight overestimation of the coexistence domain~we obtained
the same result fork510!, that corresponding tok540 is
qualitatively incorrect and is a pure artifact of the metho
Such a failure is very similar to that observed by Velas
Navascue`s, and Mederos@30#, who applied the FPT to asym
metric HS binary mixtures in an effective one-compone
ere
FIG. 5. Phase boundaries of the hard-sph
Yukawa system in thee* -r* representation for
k57. r* 5rs3 is the reduced density. Solid
lines, optimized RHNC ~fluid!/FPT ~solid!.
Dashed lines, FPT. Squares, MC@31#.
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FIG. 6. Influence on the energy differenceD
5(s3/V)b (Fpert2FRHNC) of the size ratio and
solvent density for the GED potential.r* 5rs3

is the reduced density. Solid curves:q53 and
hs50.2 ~lower!, 0.3 ~medium!, 0.4 ~upper!.
Dashed curves:q55 and hs50.2 ~lower!, 0.3
~medium!, 0.4 ~upper!. Dotted curves:q510 and
hs50.2 ~lower!, 0.25 ~upper!.
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representation. We will develop this point further in the su
section below.

2. Depletion potential

In the reference quoted above, the FPT was used to s
the phase diagram of the mixture for different size rat
(q55 – 20). This diagram was computed in the plane (h,hs)
for hs50 – 0.4, whereh is the solute packing fraction, an
hs that of the pure solvent at equilibrium with the mixtur
For different versions of the depletion potential@4,8,9#, the
FPT was compared with the MC results@17#, obtained for
the same potentials in two cases@8,9# and directly for the
mixture in all cases. The most striking result is that while t
perturbation satisfactorily reproduces theF-S transition, it
e

ay

pa
at
fo

03110
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leads systematically to an artificialF-F transition at very
high density. This transition is located roughly in the regi
r.1, and is even more shifted for the largest values ofq.
From the MC data, aF-F ~metastable! line exists only for the
GED potential@8# for a size ratioq.10 ~for q510 the tran-
sition occurs forhs50.29!. In this case, the coexistence d
main is very large, and is located in the more usual reg
r,1. Moreover, concerning theS-S isostructural transition
line, the FPT reproduces accurately only the high-den
branch~see below!.

This discrepancy can be explained in a similar way
those obtained with the Yukawa potential for very largek. To
show this, we have plottedD5s3/V3bDF1 for the GED
potential:
bfG~x!55
`, x,1

2
11q

2
@3l2hs1~9l112l2!hs

21~36l130l2!hs
3#, 1<x<11

1

q

0, x.11
1

q

n-
ts
l
is

eter
the
ary

-
as
@with l5q(x21)21#, for q53, 5, 10 andhs50.1– 0.4~see
Fig. 6!.

~i! For every couple (q,hs), D~r! has, as expected, th
same shape as for the Yukawa potential~for the latter, we
plottedd5D/«* 2.! This, therefore, explains in the same w
why the FPT is more suitable for theF-S transition than for
the F-F one.

~ii ! In the present case, the influence of the physical
rametersq andhs on D is, however, more complex than th
of k and«* for the true one-component systems; indeed,
a fixedq, the increase ofhs not only increasesD ~as does«*
for the one component fluid!, but it also shifts its maximum
-

r

towards high densities~the same trend is observed when i
creasingq at fixedhs!. Thus, for every size ratio, there exis
a value ofhs above which the FPT will lead to an artificia
transition, involving high-density states. This transition
similar to those previously discussed for the large-k Yukawa
systems. But in the present case, it occurs at all diam
ratios. The reason is that, with the depletion potential,
magnitude and the depth of the attractive well do not v
separately with the two parametershs andq. This appears in
Fig. 7, wherefC(x) is plotted forq53.5 andhs50.2, 0.4:
we see that increasinghs at fixedq increases both the mag
nitude offC at contact and its spatial variations, defined
9-8
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FIG. 7. Dependence of the GED potential o
q and hs. Solid curves: q53 and hs50.2
~lower!, 0.4 ~upper!. Dashed curves:q55 and
hs50.2 ~lower!, 0.4 ~upper!. For fixedq, the first
distance of cancellation off(x) is the lower the
greaterhs .
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the
Dx215(1/fC)(]fC/]x)x51 . For example, forq53, the be-
havior offG(x) close to contact~same slope and same ma
nitude! may be fitted by a Yukawa potential: one ge
(k,«* ).(8,1.34) for hs50.2, and (k,«* ).(14,2.59) for
hs50.4. As a consequence, the FPT always leads to an
physical transition, even for moderate size ratio. An exam
is shown forq53, for which the transition occurs roughl
for hs.0.35 ~see Fig. 8!. Finally, we found for greaterq the
same results as in Ref.@30#: a decrease of the criticalhs , due
to the increase of the depletion well, and the shift of t
coexistence domain towards the large solute densities, du
the reduction of its depth.

B. Solid state

It is commonly admitted that the perturbation theory
suitable to describe the solid, for which the particles wo
be closely localized on the lattice sites, and thus the struc
rather insensitive to the attraction@30,35#. Indeed, as already
mentioned, the FPT reproduces quite well theF-S transition
03110
n-
le

e
to
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even for very singular potentials such as the depletion o
for large asymmetry. However, the situation worsens wh
considering theS-S isostructural transition. This transitio
exists for hard-core systems with very-short-ranged pot
tial; for instance, it is stable forq>20 for a GED potential
@17#, and fork>25 for the Yukawa one@33#. For the Yukawa
potential, the results obtained in the FPT by Hasegawa@32#
were in qualitative agreement with the MC data of Ref.@33#,
but the criticalk above which theS-Stransition is stable with
respect to melting was somewhat overestimated~kc.40 in
the FPT!. We found essentially the same result for this p
tential with our version of the FPT for the fluid and the so
state. But, as there is no~to our knowledge! MC data for the
free energy in the literature, we could not push the comp
son further.

MC values of the free energy were given in Ref.@17# for
the GED potential forq55, 10. The FPT performed in Ref
@30# describes accurately the dense solid branch, near c
packing, but not the extended~HS-like! solid one. We argue
that this feature, together with the results obtained with
n

e

r
ter
FIG. 8. Influence of the FPT approximatio
on the F-F transition for q53 and hs50.38
@f * 5(s3/V)bF and r* 5rs3#. At this solvent
density, the FPT~dashed curve! leads to an arti-
ficial transition that is predicted neither by th
optimized RHNC theory~solid curve! nor by the
MC simulations@17#. Inset shows the nonlinea
contribution to the reduced FPT free energy af
subtraction of its linear part.
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FIG. 9. Influence of the FPT approximatio
on the reduced solid free energyf *
5(s3/V)bF. r* 5rs3 is the reduced density
The FPT ~dashed curve! accurately reproduces
the MC data~empty squares, from@17#! only in
the dense solid region.
th
is
m

t
’
i-

e

g
to
c
n
n
in
lid
th
r

he
o
io
tl
io
t

e
rr
o
at

d
n-

x-
t
g
-
la

der
ar-

ese
tive
lloi-
ison
uid
m-
er-
en-
hen
d,
the
ct

this

wa

ne
m-

tion
wa

is
ent
e
PT
the
ys-
ree
in
i-
ly
the
HS
the
ry
Yukawa potential, is a consequence of the extension of
approximation too far from the close packing limit. This
evidenced in Fig. 9 in which our version of the FPT is co
pared with the simulations data, forq510 and hs50.09,
0.13. For this size ratio, theS-Stransition is metastable, bu
its critical point aths.0.06 is very close to the ‘‘stable’
melting line. While describing rather accurately the min
mum ofFMC near close packing~due to the very short rang
of the depletion potential!, the deviationDF with respect to
the simulations increases progressively when decreasinr.
In both cases,DF increases, when passing from the liquid
the solid state. We ignore whether this trend is systemati
not, but it clearly demonstrates that the ordered state is
intrinsically more appropriate for the perturbation treatme
In fact, as emphasized in Sec. II, far from the close pack
limit, the averaged two-particle density of the HS so
shows a peak at contact, as in the liquid state. Thus,
accuracy of the FPT is determined in every case by the
spective widths of the HS correlation functions and of t
interaction potential. When the range of the latter is t
short, the FPT cannot be extended to the whole solid reg

However, the high-density solid state is always correc
described since it occurs when the width of the correlat
peak is marked enough in the separation range where
potential is significant~see @37,38# for the evolution with
density of this peak in the solid!. In this case, indeed, th
internal energy gain offsets the entropy decrease. This co
sponds to the situation where the FPT is appropriate, c
trary to the density functional approaches with a liquid st
as reference. Moreover, as theS-Stransition occurs for much
weaker potentials than theF-F one, the FTP may be applie
close to the critical point in a more suitable way; for i
stance, we have found the onset of theS-Stransition aths
50.06 forq510, in agreement with simulations. Our coe
istence densities are also correctly located with respect to
MC data ~rc51.18, 1.26 in the FPT, the transition havin
just occurred!. However, as soon ashs increases, the transi
tion line quickly widens. Then, the extension of the calcu
tion to lower densities makes the FPT inaccurate.
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V. CONCLUSION

In this paper, we examined the accuracy of the first-or
perturbation theory of classical systems of hard-core p
ticles interacting via short-range attractive potentials. Th
model potentials may be suitable to describe at the effec
one-component level some complex systems such as co
dal suspensions. The advantage of the FPT, in compar
with more accurate methods such as the RHNC for the fl
or the MC simulations, is that it does not require heavy co
putations and lends itself to simpler interpretations. Furth
more, it is not subject to the nonconvergence problem
countered by most of the integral equation methods w
approaching theF-F coexistence line. Concerning the soli
more sophisticated density functional approaches of
MWDA type involve also heavy computations and are in fa
not appropriate for the potentials under consideration in
work.

Our numerical results have been obtained for the Yuka
potential and that of Goetzelmanet al. They confirm the
main trends predicted from our formal analysis: on the o
hand, the accuracy of the FPT depends trivially on the te
perature, or more generally, the strength of the perturba
potential. In this respect, we have observed for the Yuka
potential that the deviationFpert2FRHNC has a major contri-
bution in T2 in a rather wide range of temperature. Th
suggests that the accuracy of the perturbation treatm
would be improved significantly by incorporating th
second-order term. On the other hand, the validity of the F
depends in a more subtle way on the interplay between
range of the interaction potential and the density of the s
tem: for a fixed potential the difference between the FPT f
energy and the ‘‘exact’’—RHNC or MC—ones vanishes
the low- and high-density limits while it reaches its max
mum at some intermediate value. But while it is common
considered that the FPT is appropriate to study both
dense fluid and the solid states for potentials with an
repulsive part, we have shown that this is not true when
range of the attractive tail is very small. Indeed, for ve
short-range attractions~typically k>20 for the Yukawa po-
9-10
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tential! the validity of the FPT is drastically restricted to
very narrow density domain near the close packing limit. T
limitation of the FPT for such potentials is a consequence
the strong attractive force they induce near contact: w
shifting the density from its close-packing value, these for
quickly compete with the HS repulsion for the determinati
of the microscopic structure. Then, the HS system is
longer a good reference. Furthermore, we have shown
the accuracy of the FPT is not improved when passing fr
the fluid state to the solid one with the same density,
contradiction with what could be expected intuitively fro
considerations based on the density profile of the two sta
Indeed, the accuracy of the FPT is in fact determined by
respective widths of the perturbation potential and that of
peak of the PDF—or the averaged one for the solid—n
contact. In an extended solid, not at close packing, this p
is not necessarily narrower than that of the fluid with t
same density.

To summarize, the FPT is intrinsically suitable to descr
the F-S transition even for extremely short-range potentia
Indeed, this transition involves only physical states for wh
the FPT is appropriate: moderate strength of the reduced
tential for the HS-like transition, and densities very close
the two opposite limits for the sublimation. On the contra
the prediction for theF-F transition depends critically on th
range of the attraction. For a Yukawa potential, theF-F tran-
sition is qualitatively well described fork<10, the critical
v

tte

J.

e

03110
e
f
n
s

o
at

n

s.
e
e
r

ak

e
.
h
o-

o
,

temperature being just slightly overestimated. The situat
worsens dramatically fork>20 where an unphysical trans
tion is found between two high-density fluid states. This fa
ure for such potential ranges is the consequence of the p
discussed above. In the case of the depletion potential,
have shown that the FPT leads to a similar artificialF-F
transition whatever the size ratioq is, above some value o
solvent packing fraction in the reservoirhs . In this case
indeed, the width of the depletion well may arbitrarily b
reduced by increasinghs at fixedq. Therefore, the pathology
of the FPT already observed by Velasco, Navascues,
Mederos for some size ratios is in fact systematically pres
in the phase diagram. As a consequence, the FPT is not
able to study theF-F transition either for pure solvent
colloid systems or for mixture of supramolecular spec
with moderate size ratio. Furthermore, we have shown
the FPT suffers from the same limitations in the case of
S-S isostructural transition since this one is present only
very-short-range potentials. The perturbation theory rep
duces accurately the solid branch located near close pac
but not the extended solid one for which the effect of t
attractive forces on the structure cannot be neglected. H
ever, as theS-S transition occurs for lower strength of th
interaction potential, we found that the FPT could eventua
be used at least qualitatively to predict the existence of s
phase transitions.
,
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